Dissociation kinetics of macrocyclic trivalent lanthanide complexes of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A).

نویسندگان

  • Chih-Cheng Lin
  • Chia-Ling Chen
  • Kuan-Yu Liu
  • C Allen Chang
چکیده

The [H(+)]-catalyzed dissociation rate constants of several trivalent lanthanide (Ln) complexes of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (LnDO2A(+), Ln = La, Pr, Eu, Er and Lu) have been determined in two pH ranges: 3.73-5.11 and 1.75-2.65 at four different temperatures (19-41.0 °C) in aqueous media at a constant ionic strength of 0.1 mol dm(-3) (LiClO(4)). For the study in the higher pH range, i.e. pH 3.73-5.11, copper(II) ion was used as the scavenger for the free ligand DO2A in acetate/acetic acid buffer medium. The rates of Ln(III) complex dissociation have been found to be independent of [Cu(2+)] and all the Ln(III) complexes studied show [H(+)]-dependence at low acid concentrations but become [H(+)]-independent at high acid concentrations. Influence of the acetate ion content in the buffer on the dissociation rate has also been investigated and all the complexes exhibit a first-order dependence on [Acetate]. The dissociation reactions follow the rate law: k(obs) = k(Ac)[Acetate] + K'k(lim)[H(+)]/(1 + K'[H(+)]) where k(AC) is the dissociation rate constant for the [Acetate]-dependent pathway, k(lim) is the limiting rate constant, and K' is the equilibrium constant for the reaction LnDO2A(+) + H(+) ⇔ LnDO2AH(2+). In the lower pH range, i.e. pH 1.75-2.65, the dye indicator, cresol red, was used to monitor the dissociation rate, and all the Ln(III) complexes also show [H(+)]-dependence dissociation pathways but without the rate saturation observed at higher pH range. The dissociation reactions follow the simple rate law: k(obs) = k(H)[H(+)], where k(H) is the dissociation rate constant for the pathway involving monoprotonated species. The absence of an [H(+)]-independent pathway in both pH ranges indicates that LnDO2A(+) complexes are kinetically rather inert. The obtained k(AC) values follow the order: LaDO2A(+) > PrDO2A(+) > EuDO2A(+) > ErDO2A(+) > LuDO2A(+), whereas the k(lim) and k(H) values follow the order: LaDO2A(+) > PrDO2A(+) > ErDO2A(+) > EuDO2A(+) > LuDO2A(+), mostly consistent with their thermodynamic stability order, i.e. the more thermodynamically stable the more kinetically inert. In both pH ranges, activation parameters, ΔH*, ΔS* and ΔG*, for both acetate-dependent and proton-catalyzed dissociation pathways have been obtained for most of the La(III), Pr(III), Eu(III), Er(III) and Lu(III) complexes, from the temperature dependence measurements of the rate constants in the 19-41 °C range. An isokinetic (linear) relationship is found between ΔH* and ΔS* values, which supports a common reaction mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of terbium chelate structure on dipicolinate ligation and the detection of Bacillus spores.

Terbium-sensitized luminescence and its applicability towards the detection of Bacillus spores such as anthrax are of significant interest to research in biodefense and medical diagnostics. Accordingly, we have measured the effects of terbium chelation upon the parameters associated with dipicolinate ligation and spore detection. Namely, the dissociation constants, intrinsic brightness, lumines...

متن کامل

Detection of bacterial spores with lanthanide-macrocycle binary complexes.

The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb, and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding ...

متن کامل

Ligand preorganization in metal ion complexation: molecular mechanics/dynamics, kinetics, and laser-excited luminescence studies of trivalent lanthanide complex formation with macrocyclic ligands TETA and DOTA.

The molecular mechanics and dynamics calculations, kinetics, and laser-excited luminescence studies were carried out for trivalent lanthanide (Ln(3+)) complexes of macrocyclic polyaminopolycarboxylate ligands TETA and DOTA (where TETA is 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid and DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to further understand the obs...

متن کامل

Spectroscopic analysis of ligand binding to lanthanide-macrocycle platforms.

A high-affinity, binary Eu(3+) receptor site consisting of 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) was constructed with the goal of improving the detection of dipicolinic acid (DPA), a major component of bacterial spores. Ternary Eu(DO2A)(DPA)(-) complex solutions (1.0 microM crystallographically characterized TBA x Eu(DO2A)(DPA)) were titrated with EuCl3 (1.0 nM-1.0 mM); increased ...

متن کامل

A benzimidazole functionalised DO3A chelator showing pH switchable coordination modes with lanthanide ions.

The synthesis of a new macrocyclic chelator incorporating a benzimidazole heterocycle is reported. Lanthanide complexes with macrocyclic chelators based on 1,4,7,10-tetra(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA) and 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DO3A) are of interest in luminescent, radiopharmaceutical and magnetic resonance (MR) biomedical imaging applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 40 23  شماره 

صفحات  -

تاریخ انتشار 2011